

This project has received funding from the EU's Horizon 2020 research & innovation programme under GA № 688329

Nanonets2Sense

Nanonet-based integrated sensors for health and well-being

WP4: Device characterization and modelling

<u>T. Cazimajou</u>, M. Legallais, T.T.T. Nguyen, M. Mouis, C. Ternon, V. Stambouli, G. Ghibaudo

IMEP-LaHC (CNRS, UGA, Grenoble INP, F-38000 Grenoble, France)

cazimajt@minatec.grenoble-inp.fr

T. Cazimajou IMEP-LaHC ESSDERC 2018 - SiNano Worskshop 3-6 September 2018 - Dresden, Germany Nanonets2Sense G.A. n.688329

FET-based Biosensor Characterization

Electrical Characterization and compact modelling of NN-FET

Physical modelling of NN-FET

FET-based Biosensor Characterization

T. Cazimajou IMEP-LaHC ESSDERC 2018 - SiNano Worskshop 3-6 September 2018 - Dresden, Germany Nanonets2Sense G.A. n.688329

Si-Nanowire as conduction channel

"Fabrication and characterization of high-K dielectric integrated silicon nanowire sensor for DNA sensing application" G.Jayakumar, M.Legallais, et al., SPIE Nanoscience + Engineering (2016)

T. Cazimajou IMEP-LaHC ESSDERC 2018 - SiNano Worskshop 3-6 September 2018 - Dresden, Germany Nanonets2Sense G.A. n.688329

Si-Nanowire as conduction channel

"Fabrication and characterization of high-K dielectric integrated silicon nanowire sensor for DNA sensing application" G.Jayakumar, M.Legallais, et al., SPIE Nanoscience + Engineering (2016)

T. Cazimajou IMEP-LaHC ESSDERC 2018 - SiNano Worskshop 3-6 September 2018 - Dresden, Germany Nanonets2Sense G.A. n.688329

Si-Nanowire as conduction channel

"Fabrication and characterization of high-K dielectric integrated silicon nanowire sensor for DNA sensing application" G.Jayakumar, M.Legallais, et al., SPIE Nanoscience + Engineering (2016)

T. Cazimajou IMEP-LaHC ESSDERC 2018 - SiNano Worskshop 3-6 September 2018 - Dresden, Germany Nanonets2Sense G.A. n.688329

Measurable Threshold Voltage variation during hybridization

Next step: FET-based biosensor with Si-Nanonet as channel

Electrical Characterization of NN-FET

T. Cazimajou IMEP-LaHC ESSDERC 2018 - SiNano Worskshop 3-6 September 2018 - Dresden, Germany Nanonets2Sense G.A. n.688329

Devices geometries and characteristics

► Nanowires

- Length = 6.9 μm ± 2.8 μm
- Diameter = 39 nm ± 7 nm

Nanonet Fabrication

• NWs density = 0.18 NW/ μ m² \rightarrow 0.75 NW/ μ m²

Devices geometries

- Nanonet on Si/Si₃N₄(200nm) Wafer
- Substrate used as back-gate
- Channel Length L= 5 μ m \rightarrow 1000 μ m
- W_{pad} = 200 μm

Gate characteristics measurements

► Up to 20 devices for each channel length and density

10⁻⁶ |Drain current| |I_d(A)| **10**⁻⁷ **10**⁻⁸ 10⁻⁹ L = 5 µm = 30 µm 10^{-10」} **10**⁻¹¹ -20 -10 20 30 -30 0 10 Gate Voltage V_g(V)

Constant density = 0.53 wires/ μ m²

- Functionality as p-FET device is demonstrated
- Correct turn-on behaviour
- Visible variation of electrical characteristics with channel length (and density)

Compact Model

Utility of Compact Modelling

- Summarize the behaviour of NN-FET with a reduce number of parameters
- Compare the quality of 2 different sets of NN-FET (for optimization)
- Understand the physic of the NN-FET (if the electrical parameters have a physical meaning)

Parameters extracted

Based on Lambert W function

Extraction of the main electricals parameters:

- Effective Low-field mobility μ₀
- Subthreshold slope ideality factor n

 $Slope = \frac{q}{kT} \frac{1}{n}$

- Good fit obtained on most devices
- μ₀ has to be normalized with
 W_{physical} and L_{physical}
- Assumption for extraction:
 W=W_{pad}

ESSDERC 2018 - SiNano Worskshop 3-6 September 2018 - Dresden, Germany

μ₀=f(L) for different NW densities

- W_{physical} = f (NW density, L, NW diameter) << W_{pad}
- From short L to long L => μ 0 \searrow (because of conduction through junctions)
- For short L, density dependence explained by variation of W_{physical}
- Long L : density dependence explained by emergence of more efficient conduction channel

- For short L, NWs in parallel with a dispersion of the threshold voltage of individual NWs (V_{th_NW}):
 - V_{th} of the NN = that of the NW with the more positive V_{th_NW}
 - n
 ¬ : progressive turn-on of the several NWs as V_G decreases
- ► For long L, NWs in series:
 - V_{th} of the NN = that of the NW with the more negative $V_{th NW}$ along a conduction path
 - n of NN = that of the NW with the more negative V_{th NW}
 - Reduced dispersion

Conclusions

- NN-FET functionality as p-FET is demonstrated
- Good fit of the Id-Vg obtained with compact model
- Variations of electrical parameters with channel Length and density can be explained